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either or both species in a predator-prey system. The hypotheses are
made as mild as possible so that several types of systems with different
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SIGNIF ICANCE AND EXPLANATION

R

;n our previous work on predator-prey systems we have studied the
effect of constant-rate harvesting of either species. The same techniques
may be used to analyze the effect of negative harvesting rates, which
correspond to stocking the system by constant rate addition of members.
This is a common practice in many situations, particularly in connection
with fish populations where food supply corresponds to prey and fish to
predators, and our results indicate some dangers, principally the danger
of wiping out the food supply by stocking fish too rapidly. It will be
seen that it is safer to increase the food supply. This avoids extinction

dangers, tends to stabilize the system, and increases the equilibrium fish

population.
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CONSTANT-RATE STOCKING OF PREDATOR-PREY SYSTEMS
F. Braver’ and A. C. Soudack®®

1. INTRODUCTION

In our previous work on predator-prey systems [Braver and Soudack (1979a), Braver
and Soudack (19790)] we have studied the effect of constant-rate harvesting of either
species. The same technigques may be used to analyze the effect of negative harvesting
rates, which correspond to stocking the system by constant rate addition of members.
This is a common practice in many situations, particularly in connection with fish
populations where food supply corresponds to prey and fish to predators, and our
results indicate some dangers, principally the danger of wiping out the food supply
by stocking fish too rapidly. It will be seen that it is safer to increase the food
supply. This avoids extinction dangers, tends to stabilize the system, and increases

the equilibrium fish population.

‘Department of Mathematics, University of Wisconsin-Madison,
Madison, Wisconsin 531706, U.S5.A.

**pDepartment of Electrical Engineering, University of British Columbia,
Vancouver, B.C. V6T IWS, Canada

Sponsored by the United States Army under Contract No. DAAG29-75-C-D024 and the National
Research Council of Canada under Grant No. A-1138,




2. PRELIMINARIES

We consider the systea

3 x' = xfin,y) = F

x' = yoix,y) - G

as a model for the sizes x(t) of a prey population and y(t) of a predator population

at time t. The parameters ~F and -G are non-negative constants representing rates

at which prey and predators respectively are added to the system, We write the stocking

in order to make the notation conform to our

rates in this form with F < 0, G < 0

previous work on harvesting [Brauver and Soudack (1979a), Brauer and Soudack (1979b)].

In order to describe the predator-prey nature of the system, we assume

(2) !v(n.y) < 0, Q.il.y) > 0, qy(l.y) <0

for x>0, y » 0, and that there exists J > 0 such that

(3 9(3,0) = 0

in many of the commonly-used sodels, the function ¢ depends on x only, corresponding

to the biological property that the predators do not interfere with one another in their

search for prey. In such a model, the curve gix,y) = 0 becomes the vertical straight

line x=J, and g(J,y) » 0 for all y > 0.

While additional conditionz are usually imposed [May (1973), Bulmer (1976)), they

are not required for our analysis. Under the conditions (2), (3), every orbit of the

system (1) with initial value in the first quadrant of the (x,y) plane at t = 0

either leaves the first quadrant in finite time or remains in a bounded subset of the

first quadrant for all t > 0 (Braver (1979)]). Since F < 0 and G < 0, no orbit

can lesave the first gquadrant as t increases; therefore every orbit remains in the

first quadrant and the Poincare-Bendixson theorem is applicable. It follows that every

orbit tends as t » = either to a stable equilibrium or to a stable limit cycle. Note,

however, that there could be several stable equilibria or limit cycles with different

domains of attraction. A stable equilibrium on one of the coordinate axes corresponds
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to extinction of one of the species, This is qualitatively different biclogically from
a stable equilibrium in the interior of the first quadrant, corresponding to coexistence
of the two species, even though there may be no qualitative mathematical distinction.
By analyzing the local stability of equilibria, we shall obtain information about the
fossible behaviours of orbits, including estimates of the region of asymptotic stability.
We shall ignore the structurally unstable possibility of an equilibrium which is stable
but not asymptotically stable on biological grounds. WwWe shall also not consider further
the possibility of more than one stable limit cycle, or such situations as a stable
equilibrium surrounded by an unstable periodic ordbit, which is surrounded by a stable
limit cycle. Such possibilities can occur, and our methods can be adapted to deal with
them, but we avoid them in the interest of simplicity of classification. However, we
shall see that there are situations in which there must be two equilibria, each with a
domain of attraction (see Figure 11).

Since !Yu.y) # 0, the equation fix,y) = 0 defines y as a single-valuved
function of x, denoted by y » $ix), which we may assume non-negative on some

interval o ¢« x <X, with a >0 and X <=, and (K, 0) =0 (f K<w If a=0,

it follows from !yu.y) <0 that f(0,0) » 0, and there exists L, 0 <l <&, suh

that

4 to,L) = 0

Biclogically, the number L represents the maxisum predator density for which the prey
population can establish itself from a small initial population. 1If a > 0 and

£(a,0) = 0, then ((0,0) « O; this is the case in which the prey population is unable
to develop even in the absence of predators if it gets too small. The number K is &
carrying capacity for the prey species, the maximum equilibrius population in the
absence of predators. In order to include such examples as the lake eutrophication
model of O'Brien (1974) and the spruce budworm model of Ludwiq, Jones, and Holling

(1978), we permit the possibilities K «* and L = =,




The qualitative behaviour of the system (1) is quite different in the three cases

(1) & >0, (44) 3«0 but L==, and (111) a = 0, L <™ Accordingly, it will

be necessary to distinguish these cases in what follows.

Since 9'(n.y) >0 and qy(l.v) £ 0, the equation gix,y) = 0 defines x as a

sonotone non-decreasing function of y, denoted by x = I'(y). In view of the assump-

and J = r(0). 1In many of the

this function is defined for

tion (2}, Dcsy«<oe,

sodels used to describe predator-prey systems, the function ¢ is independent of y,

as we have already mentioned. 1In this case [ is the constant function x = J,

8iologically, J 1is the minimum prey population required for the predator population

to establish itself,

We will examine explicitly only the case J < K; the case J > K

can be treated in exactly the same way, with analogous results,

An equilibrium of (1) is an intersection (x,y) of the prey isocline

(s ' xf(x,y) ~F =0,

and the predator isocline

(6) y9i(x,y) -G =0 .,

The assumptions we have made on ! and g imply the existence of an equilibrium

(x_,y,) with x_ > 0, y, >0 for F =0, G= 0. we shall assume that this

equilibrium, in the interior of the first quadrant, is unigque. As F and/or G vary,

the equilibrium (x_,y ) will move, and may disappear for some critical stocking rates.

If either F or G is gzero, there may also be equilibria on the coordinate axes.

The slope of the prey isocline at an equilibrium (Xk,§) is

if.(i.il . fix,¥)

xf (x,y)
y (Re¥

which has the same sign as if'(i.i) + £(x,y), by (2), while the slope of the predator

tsocline is L
] yq’(l.y)
iqy(i.w + glx,y)

which has opposite sign to 'yqy(i.v}) ¢ gix,¥) by (2) unless g(k,¥) = 0 (that is,

G = 0) and qy(i.?) = 0, in which case the predator isocline is vertical. By

examininy the coefficient matrix



xf (x,y) ¢ £(x,y) ity(i.iq

Alx,y) = R
w'(u.y)

of the linearized system at an equilibrium (X,y) and observing that (x,y) is a
saddle point if and only if det A(x,y) < 0, it is easy to verify that (x,y) is a
saddle point L{f and only if the slope of the predator isocline is either negative but
larger than the slope of the prey isocline or positive but smaller than the slope of
the prey isocline. If the predator isocline is vertical, (X,y) can not be a saddle
point. This generalizes a criterion of Bulmer (1976) for F = 0, G = 0. 1In particular,
the remark of Bulmer that if there is a unigue equilibrium in the interior of the first
gquadrant, then this equilibrius can not be a saddle point, extends to arbitrary ¥
and G.

In the following sections, we shall examine the effect of varying ¥, or G, or
both F and G simsultanecously. We shall pay particular attention to the mathemstical
catastrophes which may arise if the equilibrium which is at (x_,y ) for F« G~ 0
coalesces with the equilibrium which is at the origin for F = G = 0. There is another
saddle point which is at (X, 0) for F = G = 0, but we shall see that it plays no

role in the analysis when P < 0 or G < 0,




PREY STOCKING

We fix G = 0 and decrease F from zero. If a =0, then for F = 0 there
18 an equilibrium (x_.y_.) which is not a saddle point and there are two saddle
points sl(o.m and Sz(l,O). If a> 0, then for ¥ = 0, Sl is an asymptotically

stable equilibrium, and there is a second saddle point S!(a,O). As F decreases,

the prey isocline moves up, since !y(l.y) € 0. For F < 0 the prey isocline is

asymptotic to the y-axis and to the curve f(x,y) = O, Thus if a = 0, sl moves
into the second guadrant and 52 moves to the right along the x-axis (Figure 1). If

5l moves to the right and S] moven to the left along the x-axis until Sl
and S‘ coalesce and disappear (Figure 2).
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Since every orbit which starts in the first quadrant at t = 0 remains in a

bounded subset of the first quadrant for all t > 0, the Poincaré-Bendixson theorem

shows that svery orbit tends either to P- or to a limit cycle around P, oOr to 81

(4¢ a > 0) as ¢t » =, with the exception of orbits starting on the x-axis and

tending to the saddle point :i2 and, in the case a > 0, a separatrix in the first

quadrant tending to the saddle point s’ (Figure 2).

In the case a > 0 this

separatrix divides the first quadrant into two regions, the domain of attraction of

3 P_ or a limit cycle around P_, for which both species coexist, and the domain of

; attraction of § for which the predators become extinct as ¢t + =,

ll
Az F  decreases, the equilibrium F_

moves up along the curve gix,y) = 0, If

:t.(x.yl ¢ fix,y) <« 0 for large y, as is the case for the commonly used predator-

prey models, then it is easy to see that the cquilibrium P must be asymptcotically

stable for all large '¥F|. This suggests that if a = 0 there are essentially two

possibilities. Either F_  is asymptotically stable for all F © 0 and all orbits

tend to P, oOF P is unstable initially and orbits tend to a limit cycle around

P_ but as |[F| increases, P_ stabilizes and orbits tend to P_.

If a » 0, the behaviour in the domain of attraction of P, ora limit cycle

around P_ is the same as for the case a = 0. As |F| increases, the domain of

shrinks until sl and s, coalesce. This coalescence is a

mathematical catastrophe, though without the usual connotation of disaster. It

attraction of Sl

signals a transition to a gqualitative picture like the case for a = 0 with no

possibility of predator extinction; there exists r‘~ « 0 with predator extinction for

some initial states if 0 > F > rc and coexistence for all initial states if F <« rc.




4. PREDATOR STOCKING

We now fix F = 0 and decrease G from zero., For G < 0, the predator isocline
(6) 18 asymptotic to the curve gix,y) = 0 as y * = and lies to the left of
gix,y) = 0 Dbecause of (2), In order to analyze the behaviour as G decreases we must
separate the three possibilities:
(a) a * 0 =0 that the curve fix,y) = 0 does not intersect the positive y-axis
(b) a =0 but Le=w=, g0 that {{0,y) » 0 for y >0 and lim #(x) = ¢=,

x*0,

ic} a =0 and there exists L < = with f((0,L) = 0.

It a >0, as G Adecreases F_ moves along fix,y) = 0 to the left, sl move s
W the y-axis, and s) soves along fix,y) « 0 to the right, while s, moves down
into the fourth quadrant (Figure 1), Just as in the prey stocking situation, there
i% a separatrix at &, which divides the first gquadrant into a domain of attraction
of F_ or a limit cycle around F_  for which both species coexist, and & domain of
attraction of 5l. The only difference is that now sl corresponds to prey extinction,

Eventually. 5, and P_ coalesce and disappear. When this occurs, we have a

sathematical catastrophe, and all orbits tend to s‘ (prey extinction). Thus there

exists G < 0 with coexistence for some initial states if O > G » c‘_ and prey
< -

extinction for all initial states (f G « G(.
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4 If a =0 but Le= a3 G decreases FP_ moves along f(x,y) = 0 to the

left and s‘ soves W the y-axis (Figure 4). For such models, l.(l.y) <0, and

it is easy to verify that this implies the asymptotic stability of the equilibrium

P_. Simce fix,y) = 0 never meets the y-axis, there is no coalescence, and every

orbit with initial value in the interior of the first quadrant tends to P a8 t e,

As |G| Dbecomes large, P_ comes very close to the y-axis, and a small perturbation

may wipe out the prey population. In practical terms, the system is not stable.

]2







The situation in which 4 = 0 and L < * is considerably more complicated.

Since this is the one which describes most of the commonly used models, we examine

it in detail. As G decreases, P_ moves to the left along fix,y) = 0 and Sl

moves up the y-axis, with every orbit starting in the interior of the first quadrant

tending either to P_ or to a limit cycle around P as ¢t = = (Figure 5).
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g ("l‘y ) =0

(K,0)

“1%-

f(x,y)=0

Fig. 5 ‘




As sl reaches the Point Q(0,L) where fix,y) = 0 meets the y-axis, there are two
possible cases:
Case I: The slope of the prey isocline for F=0 is less than the slope of the
E predator isocline with G chosen so that the predator isocline passes through (0,L)
‘. (Figure 6). In this case, 'l and P_ ®meet at Q. Before this occurs, every orbit

tends to P_ or to a limit cycle around P_ as t = = As -G increases further,

P_ disappears and §  Dbecomes an asymptotically stable node to which every orbit

1
tends as t *» =, corresponding to prey extinction. Somewhat as in the situation in
which @ > 0, there exists G_ with coexistence for all initial states if 0 > G > G
and prey extinction for all initial state if G « Gc. The critical stocking rate -Gc
is given by

n -Oc - =lg(o,L)

-16-
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Case 11: The slope of the prey isocline for F=0 js greater than the slope of
the predator isocline with G chosen so that the predator isocline passes through
(0,L) (Figure 7). In this case 5‘ reaches Q while P_ is still in the interior
of the first quadrant. Until this occurs, every orbit tends to P or to a limit
cycle around Do BN K, when s1 passes O, a new equilibrium appears - a
saddle point T on fix,y) = 0, The stable separatrices at T wseparate the first
quadrant into a region for which orbits tend to P. or a limit cycle around P. and

a region for which orbits tend to the stable node § a region of prey extinction

l'
(Figure 8). There is a second transition, when T and P_ coalesce and disappear,

and all orbits tend to § (Figure 9). Thus in this case there exist Gc. G« 0

1
with coexistence for all initial states if O > G > Goo o region of coexistence and
a region of prey extinction if G_ > G > G*, and prey extinction for all initial
states if G * G®. As in Case 1, G_ is given by (7), and is easily calculated. The
seocond transition rate G° can also be calculated as the value of G for which the

intersections of (6) with fix,y) = 0 coalesce.
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Since the distinction between Cases I and Il is in terms of the slopes of the

isoclines at (O,L), it is easy to see that the system (1) is in Case 1 if and only if

. £ 0.0 T g (0,L)
ty(O.L) q(0,L) + wy(o.x.)

(8)

For the large class of models with

fix,y)

= ¢(x) - yh(x)
o)

gix,y) = aixhix) - Jhid))

where ¢i{x) » 0 for 0 < x <K, #'(x) <0, hix) 20, h'(x) £ 0, ([xhix))' > O,

and xhix)

is bounded as x * = [Maynard Samith (1974)), the condition (8) reduces to

Jh(2)(h(0)e' (0) = ¢(OIN*(0)] < 4(0) (h(O))? ,

from which we see that a sufficient condition for Case I is

=h' 0)

(10) Jhn 2
{h(0))

% T
hix)

(10) is satisfied, and therefore, so are the standard forms of predator functional

> 0, then

(Cbserve that hi(0) > 0 §f L < =), It is easy to show that if

ox

) liviev

response such as hix) = - A (Holling (1965)] and h(x) = E (1-e

* A

(1961} ].

The

However, it is not true that all models of the form (9) are in Case I.

3 (admittedly artificial) choice
-1/2
’ hxy « 22020

for which h(0) = %. h'(0) = -%. violates (10) ¥ J » 8. More significantly, in

Section 6 we shall describe a class of predator-prey models in which predators

interfere with one another for which the system (1) is in Case II if this interference

Thus the biological effect of predator interference is to give a

is large enough.

possibility of prey survival (depending on the initial state) under predator stocking

which would guarantee prey extinction without this interference.

PR st ot e e
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S$. TWO-SPECIES STOCKING

Simultaneous stocking of both species corresponds to making both ¥ and G
different from zero, If a = 0, then S! moves into the second quadrant and 52 moves
into the fourth gquadrant. There is no possibility of catastrophe and for all F < 0,
G < 0 every orbit tends either to P_ or to a limit cycle around P_ as ¢t + =,
Qualitatively, the situation is similar to predator stocking when L = = (Figure 10).
For large stocking rates the equilibrium becomes asymptotically stable but there is a

practical instability since the equilibrium comes very close to the y-axis and a small

perturbation may wipe out the prey population.

-23-
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If a » 0, the situation is slightly different when ~F is ssaller than the
stocking rate for which sl and S’ coalesce (Figure 11}, There are two coexistence

regions divided by the stable separatrices tending to the saddle point s,. One is
the domain of attraction of F_ or a limit cycle around ¥P_, and the other is the
domain of attraction of the asymptotically stable equilibrium s‘. which is in the
interior of the first quadrant. The Coexistence region is the entire first quadrant,
but there are two possible equilibria, depending on the initial state.

There are many practical questions which can be raised for two-species stocking
problems. For example, what is the effect of increasing one stocking rate while

holding the other fixed? Such questions may be studies moat readily by a computer

simulation. In the following section, we shall indicate the results of some simulations

for a class of examples.

8=
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6. EXAMPLES

One commonly used model for predator-prey interactions [(Molling (1965))] is

tix,y) ~ e{2 - f) - ;‘!—A

(1)
sAix - J
(x ¢« AW« A

gix,y) =
It may ecasily be deduced from our earlier studies on harvesting [(Braver and Soudack
(1979a), Braver and Soudack (1979b)] that under pure prey stocking, the equilibrium
is asymptotically stable if

”1
-"n—(l-h°”).

Under pure predator stocking, the equilibrium is asymptotically stable if

rl_(J’th.OA-l) “”(J-l_’ >0,
the corresponding stocking rate may be calculated from

- @ - x )K= x)

& ol
K(J * A)
This msodel is of the type a = 0, L « =, with L « rA, The predator stocking rate

for which the saddle point §  reaches the point QI(0,L) is given by

1

Q) < = D3N
<

As we have shown in Section 4, this model is necessarily in Class I,
A variant of the model (11) which incorporates interference asong the predators
has been suggested by Bazykin (1974). For this model
tay) = et - F - =
amn
doad 4Bt ::;:Jo )
he parameter , may be viewed as a measure of the amount of interference. This model
is also of the type a = 0, L « = with L = rA, but now
(14) o, = SR
Comparison with (12) shows that for this model a higher rate of predator stocking is
needed before a transition is reached than when there is no predator interference.

37
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By examining the condition (8), we observe that the model (13) is in Case ! if and

only if

s(x ¢ J)
r(k ~ A * A)

(1%) ¥ <

Thus there is a predator stocking range in which either both species coexist or the prey
species becomes extinct, depending on the initial state, whenever there is enough inter-
ference among the predators in searching for prey.
This principle generalizes immediately to models of the form
fix,y) = ¢(x) - yhix)

gix,y) = sixhix) - JhJ)] =~ waly) .,

with ¢(x) > 0 for 0O £x < K ¢ ix) < 0, hix) > 0, h'(x) ‘_0, [xhix))* » 0O,
xhix) bounded as x = =, a(0) =0, a'(y) » 0, a'(0) = 1. It is easy to see that

such a model is in Case I Lif and only if

[0* (OYR(0) = G(OIR' (0) ) (8N (J) ¢ ufa(L) + a* (L) ;’.-%n < u(onmo)l2

Since afl) + a' (L) %:—g-;- * 0, this condition can be violated by taking u sufficiently
large. Thus the model (1)) is of the type a = 0, L <=, and may be either Case I
or Case 11,

Another variant of (11), based on a suggestion of Clark (1976), p. 166, is

b
fix,y) » rix o)(l-i)-..A

(16)
sA(x -~ J
LA A IS VYR Y)
It is easy to see that this is of the type a > 0. The spruce budworm model of Ludwig,

Jones, and Holling (1978) is of the form

fin,y) = r(l = -Ei - el

&
gix,y) = s} .’i

which is easily seen to be of the type a = 0, L = =, Thus all the types of model

we have considered are realizable in practice. .




We have performed some computer simulations for the model (11) with r =« 1, & ~ |,
K= 30, J & 10, A= 10, It is easy to calculate that the equilibrium (x_,y, ) is
asymptotically stable under pure prey stocking if and only if ~F > 2.5 and under
pure predator stocking if and only if -G > 2.1875, Purther, -cc = 5,00, and the
variant (1)) with the same parameters is in Case 11 for u » ;—‘ If y = 0,05, then
-cc = 10.00 for (1)). These results can of course be confirmed by computer simulation.

Computer simulation is more useful in examing the behaviour of the system under
simultaneous stocking of both species. For example, under fixed prey stocking,
=F = 1, we found that for -G = 0.5 there is a limit cycle, which becomes an
j‘ asymptotically stable spiral point for -G = 1, and an asymptotically stable node
- for -G = 6. However, as -G  increases, the equilibrium approaches the y-axis,

raising the possibility of prey extinction caused by a small perturbation

{Figures 12, 1), 14).
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Under fixed predator stocking, =G « 0.5, we found that for ~F = 2 there is

a limit cycle, considerably smaller than the one for ~F = 1, For -F = 4§ and for

-~F = 8, the equilibrium is an asymptotically stable spiral point (Figures (15, 16, 17),
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7. CONCLUSIONS

It appears that qualitatively the effect of increasing one of the stocking rates
while holding the other one fixed is quite simiiar to the effect under single-species
stocking . Predator stocking tends to promote prey extinction, which could have
practical applications for a pestilential prey species, provided the predator species
either requires prey to survive or is itself not a nulsance. Prey stocking tends to
stabilize the system and increase the predator population, which could have practical
applications for a predator species which one wishes to harvest in quantity.

If the predator species is a fish and the prey species is its food, our results
indicate that indiscriminate fish stocking may exhaust the food supply, leading to a
collapse of the fish population. Food supply stocking, possibly coupled with modest
fish stocking is a safer and more productive procedure. Computer simulations may be
of great use in determining optimal stocking rates, taking into account not only such
factors as stability, but also food costs., Our results indicate some directions to be
taken in analyzing mixed stocking and harvesting situations, which could have practical
significance. We propose to continue with this investigation.

The authors wish to thank Mr. Al Mackenzie for drawing the numerous figures

which appear in this paper.
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